skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sim, Uk"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Membrane technology has become a promising solution for a wide range of separation processes, including wastewater treatment, solvent recovery, and oil–water separation, due to its low energy consumption, cost-effectiveness, and minimal space needs. However, membrane damage caused by suspended pollutants or improper handling remains a challenge, often leading to decreased filtration capability and the need for replacement of membrane modules. Self-repairing membranes have emerged as a new solution, with various materials demonstrating autonomous healing properties through dynamic bonds such as hydrogen bonds or boronic ester bonds. However, many of these self-repairing membranes suffer from excessive swelling in water, compromising their mechanical stability. Herein, we report a self-repairing and low-swelling polymer network based on dopamine acrylamide (DA) and n-butyl acrylate (BA), crosslinked with p-phenylenediboronic acid (PDBA). The boronic ester bond formation between catechol and boronic acid groups confers self-healing properties to the polymer, while the hydrophobic nature of BA minimizes swelling in water. The polymer exhibits a low swelling ratio of 2.1% after 7 days of submersion in water. A cellulose-based filter paper coated with the polymer demonstrated that it can recover its water flux up to 91% after repairing damage. Lastly, an ultrafiltration polyethersulfone (PES)-based filter coated with the polymer demonstrated that it recovers its solute rejection capability after repairing damage. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026